Area formula for regular submanifolds of low codimension in Heisenberg groups

نویسندگان

چکیده

Abstract We establish an area formula for the spherical measure of intrinsically regular submanifolds low codimension in Heisenberg groups. The is constructed by arbitrary homogeneous distance. Among arguments proof, we point out differentiability properties intrinsic graphs and a chain rule differentiable functions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular Submanifolds, Graphs and Area Formula in Heisenberg Groups

We describe intrinsically regular submanifolds in Heisenberg groups H. Low dimensional and low codimensional submanifolds turn out to be of a very different nature. The first ones are Legendrian surfaces, while low codimensional ones are more general objects, possibly non Euclidean rectifiable. Nevertheless we prove that they are graphs in a natural group way, as well as that an area formula ho...

متن کامل

Intrinsic Regular Submanifolds in Heisenberg Groups Are Differentiable Graphs

We characterize intrinsic regular submanifolds in the Heisenberg group as intrinsic differentiable graphs.

متن کامل

Boundedness for Codimension Two Submanifolds of Quadrics

It is proved that there are only finitely many families of codimension two subvarieties not of general type in Q6.

متن کامل

Curvature Estimates for Minimal Submanifolds of Higher Codimension

We derive curvature estimates for minimal submanifolds in Euclidean space for arbitrary dimension and codimension via Gauss map. Thus, SchoenSimon-Yau’s results and Ecker-Huisken’s results are generalized to higher codimension. In this way we improve Hildebrandt-Jost-Widman’s result for the Bernstein type theorem.

متن کامل

Hamiltonian Submanifolds of Regular Polytopes

This work is set in the field of combinatorial topology, a mathematical field of research in the intersection of the fields of topology, geometry, polytope theory and combinatorics. This work investigates polyhedral manifolds as subcomplexes of the boundary complex of a regular polytope. Such a subcomplex is called k-Hamiltonian, if it contains the full k-skeleton of the polytope. Since the cas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Calculus of Variations

سال: 2022

ISSN: ['1864-8258', '1864-8266']

DOI: https://doi.org/10.1515/acv-2021-0049